City of Sebring 2022 Annual Water Quality Report PWS # 6280250

Once again we are proud to present our annual drinking water report, covering all drinking water testing performed between January 1 and December 31, 2022. Over the years, we have dedicated ourselves to producing drinking water that meets all state and federal standards. We continually strive to adopt new methods for delivering the best quality drinking water to your homes and businesses. As new challenges to drinking water safety emerge, we remain vigilant in meeting the goals of source water protection, water conservation, and community education while continuing to serve the needs of all of our water users. Please remember that we are always available to assist you, should you ever have any questions or concerns about your water.

Where Do We Get Our Drinking Water?

Our primary drinking water supply is from a ground water source called the Floridan Aquifer System. This aquifer is one of the major sources of groundwater in the United States, covering a total area of about 100,000 square miles. It underlies all of Florida, Southern Georgia, and small adjacent parts of Alabama and South Carolina. We have 14 wells placed throughout the system that are used to draw from this ground water source. Our ground water supply is not exposed to air and is not subject to direct pollution and contamination like a river or reservoir. In fact, ground water is the highest quality water available to meet the public health demand of water intended for human consumption. Water is drawn from this aquifer and pumped to storage facilities where it is injected with chlorine for disinfection purposes and then fluoride is added to promote strong teeth. Finally, we add a phosphate blend called Sequest-All, which helps to sequester iron deposits and help keep any metal piping like iron, copper, or galvanized lead from corroding. Demand for good, safe drinking water is high. Every day, we provide our customers an average of 3.6 million gallons.

Sources of Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs,

• and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.

• Radioactive contaminants, which can be naturallyoccurring or be the result of oil and gas production and mining activities.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high-quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at https://www.epa.gov/lead.

All Drinking Water May Contain Contaminants

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. It is important to remember that the presence of these contaminants does not necessarily pose a health risk. In order to ensure that tap water is safe to drink, the Environmental Protection Agency (EPA) prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Maximum Contaminant Levels are very stringent. To understand the possible health effects described for many regulated constituents, a person would have to drink two liters of

springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

* Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

* Inorganic contaminants, such as salts and metals, which can be naturally occurring or results from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming

* Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

•Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes

water every day at the MCL level for a lifetime to have a one-in-a million chance of having the described health effects. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (1-800-426-4791).

Source Water Assessment - City of Sebring

In 2022, the Department of Evironmental Protection performed a Source Water Assessment on our system. The assessment was conducted to provide information about any potential sources of contamination in the vicinity of our wells. There are ten potential sources of contamination identified for this system with a Low to Moderate susceptibility level. The assessment results are available on the FDEP Source Water Assessment and Protection Program Web site at https://prodapps.dep.state.fl.us/swapp/ or they can be obtained from Jay Angell, Supervisor of Water Production/Analyst, at (863) 471-5113.

City of Sebring 2022 Annual Water Quality Report PWS # 6280250

Important Health Information

The EPA has determined that your water is safe for most people at the MCL level. Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer who are undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/ AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. Environmental Protection Agency and the Center for Disease Control guidelines are appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants. These guidelines are available from the Safe Drinking Water Hotline (800-426-4791).

Unregulated Contaminant Monitoring Regulation

We monitored for a specifc list of Unregulated Contaminants (UCs) during the time period of 2015 – 2020 as part of a study to help the US Environmental Protection Agency (EPA) determine the occurrence in drinking water of UCs and whether or not these contaminants need to be regulated. At present, no health standards (for example, maximum contaminant levels) or likely sources have been established for UCs. However, we are required to publish the detected analytical results of our UC monitoring in our annual water quality report. For the complete list of results, including the non-detected contaminants, contact Jay Angell at (863) 471-5113. If you would like more information on the EPA's Unregulated Contaminants Monitoring Rule, please call the Safe Drinking Water Hotline at (800) 426-4791.

Community Participation

You are invited to participate in our public forum and voice your concerns about your Drinking Water. We meet the first and third Tuesdays of each month, beginning at 6:00 p.m. in the Council Chambers at City Hall, 368 South Commerce Ave. These meetings are televised live on Comcast channel 6, the local Government Access Channel. A copy of the Agenda for the upcoming meetings may be requested from the City office by calling (863) 471-5100. For more information about this report, or for any questions relating to your drinking water, please call Jay Angell, Supervisor of Water Production/Analyst at (863) 471-5113

importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien.

Definitions

In the tables above, you may find many terms and abbreviations you are not familiar with. To help you better understand these terms we've provided the following definitions:

* 90th percentile: The levels reported for lead and copper represent the 90th percentile of the total number of sites tested. A percentile is a value on a scale of

* AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. * LRAA (Locational Running Annual Average): The average of sample analytical results for samples taken at a particular monitoring location during the previous four calendar quarters. Level Detected values for TTHMs and HAAs are reported as LRAAs.

* MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

* MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

* MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

* MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. * NA: Not applicable

* ND (Not detected): Indicates that the substance was not found by laboratory analysis.

* pCi/L (picocuries per liter): A measure of the radioactivity in water.

* ppb (parts per billion): One part by weight of analyte to 1 billion parts by weight of the water sample.

* ppm (parts per million): One part by weight of analyte to 1 million parts by weight of the water sample.

* TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.

City of Sebring

2022 Test Results

PWS # 6280250

The City of Sebring routinely monitors for constituents in your drinking water according to Federal and State laws. The enclosed tables show the results of our monitoring for the period January 1st to December 31st, 2022 and include test results in earlier years for contaminants sampled less often than annually. For contaminants not required to be tested for in 2022, test results are for the most recent testing done in accordance with the regulations.

Microbiological Contaminants						
Contaminant (Unit)	Date of Sampling	MCL Violation Y/N	Highest Monthly Amount	MCLG	MCL	Likely Source of Contamination
Total Coliform Bacteria	Monthly 2022	No	50	0	< 5 % of Total Monthly Samples	Naturally present in the enviroment

Radioactive Contaminants							
Contaminant (Unit)	Date of Sampling	MCL Violation Y/N	Level Detected	Range of Results	MCLG	MCL	Likely Source of Contamination
Gross Alpha (pCi/L)	2020	No	3.7	1.3-3.7	0	15	Erosion of natural deposits
Radium 226 (pCi/L)	2020	No	1.9	0.4-1.9	0	5	Erosion of natural deposits
Radium 228 (pCi/L)	2020	No	0.7	0.6-0.7	0	5	Erosion of natural deposits

Inorganic Contaminants							
Contaminant (Unit)	Date of Sampling	MCL Violation Y/N	Level Detected	Range of Results	MCLG or MRDL	GMCL or MRDL	Likely Source of Contamination
Barium (ppm)	3/11/2020	No	0.036	0.0248-0.0624	2	2	Discharge of drilling wastes; from metal refineries; & erosion of natural deposits
Fluoride (ppm)	3/11/2020	No	0.483	0.282-0.711	4	4.0	Erosion of natural deposits; discharge from fertilizer and aluminum factories; water additive that promotes strong teeth when at optimal levels between 0.7 and 1.3 ppm
Sodium (ppm)	3/11/2020	No	9.92	7.71-15	NA	160	Salt water intrusion, leaching from soil

Stage 2 Disinfectants and Disinfection By-Products							
Contaminant (Unit)	Date of Sampling	MCL Violation Y/N	Level Detected	Range of Results	MCLG or MRDL	GMCL or MRDL	Likely Source of Contamination
Chlorine (ppm)	Monthly 2022	No	1.43	1.23-1.64	4	4	Water additive to control microbes
Haloacetic Acids (five)[HAA5] (ppb)	Quarterly 2022	No	21.84	8.1-78.3	NA	60	By-product of drinking water disinfection
TTHM [Total trihalomethanes] (ppb)	Quarterly 2022	No	45.78	28.7-97.1	NA	80	By-product of drinking water disinfection

Lead and Copper (Tap Water)							
Contaminant (Unit)	Date of Sampling	AL Exceedance Y/N		No. of Sampling Sites Exceeding the AL	MCLG	AL (Action Level)	Likely Source of Contamination
Copper [tap water] (ppm)	08/26/20-09/17/20	No	0.171	0	1.3	1.3	Corrosion of household plumbing system; erosion of natural deposits; leaching from wood preservatives
Lead [tap water] (ppb)	08/26/20-09/17/20	No	1.0	0	0	15	Corrosion of household plumbing system; erosion of natural deposits

Secondary Contaminants				
Contaminant (Unit)	Year Sampled	Recommended Upper Limit	Range of Results	Likely Source of Contamination
Chloride (ppm)	2020	250	11.5 - 19.0	Runoff/leaching from natural deposits
Iron (ppm)	2020	0.3	ND - 0.0731	Detergents/similar substances when water is agitated
pH (Units)	2020	6.5-8.5	8.19 - 8.31	Naturally occuring
Silver (ppm)	2020	0.10	ND - 0.0028	Antibacterial agent in many home water treatment devices
Sulfate (ppm)	2020	250	1.75 - 45.8	Runoff/leaching from natural deposits; industrial wastes
Total Dissolved Solids (ppm)	2020	500	152 - 200	Runoff/leaching from natural deposits
Zinc (ppm)	2020	5	ND -0.009	Naturally present in the environment

Contaminant (Unit)	Date of Sampling	Level Detected (Average)	Range of Results	Likely Source of Contamination
Manganese (ppb)	6/19/2020	3.75	0.9 - 10.2	Natural occurrence from soil leaching
Total Organic Carbon (ppm)	7/2/2020	1.13717	0.625 - 3.05	Naturally present in the environment
Bromide (ppm)	7/11/20 -7/14/20	40.55	6.7 - 70.6	Naturally present in the environment
HAA5 (ppb)	6/24/2020	20.73	9.6 - 29.9	By-product of drinking water disinfection
HAA6BR (ppb)	6/24/2020	8.4	7.1 -11.4	By-product of drinking water disinfection
HAA9 (ppb)	6/24/2020	27.9	15.7 -36.7	By-product of drinking water disinfection

the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted. For additional information call the Safe Drinking Water Hotline at (800) 426-4791.